# The LCLS BPM Data Acquisition System

T. Straumann, R. Akre, R. G. Johnson, D. Kotturi, P. Krejcik, E. Medvedko, J. Olsen, S. Smith SLAC, Menlo Park, CA 94025, USA

#### Requirements

- Stripline pickups (existing design)
- 10um resolution ~ 10<sup>-3</sup> R (BPM radius R~10mm)
- System response time < 1ms
- · EPICS integration
- Max. beam rate: 120Hz



- Vert. position: y = (A D)/(A + D)
- Small difference of big numbers
  -> dynamic range ~80dB needed
- Front-end reduces bandwidth (and SNR!) and increases signal level
- Undersampling of band-limited signal (~10MHz) in 3rd Nyquist zone
- ~100 significant samples

#### **Calibration**

- Difference in cable loss, drift in electronics etc.
   -> errors/drift in position reading
- Only ratio of gain in channels A + D matters
- -> Calibrate gA/gD ratio on-line



- Front-end electronics can inject a 140MHz burst into channel C. Calibration tone couples from stripline C to A and D. From ratio of amplitudes received by channels A and D the vertical branch can be calibrated
- Only depends on stability of stripline coupling ratio S<sub>AC</sub>/S<sub>DC</sub>
- Horizontal pair B/C can also be calibrated by injecting cal. signal into A (not shown)
- Calibration cycles interleaved between beam pulses; max. data acq. rate: 360Hz (beam+2 cal.)

### System Block Diagram



- Use PAD digitizer developed for LLRF; added 2nd ethernet IF
- PAD: has ADCs, FIFOs, small CPU, 2 ethernet IFs
- PAD ships waveforms (4x128 samples) over dedicated ("real-time") network to powerful VME computer
- PAD CPU controls analog front-end via SPI interface (calibration mode, various attenuators etc.)
- Monitoring and slow controls of PAD over regular TCP/IP/EPICS
- VME computer (aka "IOC") has hardware interface to timing system (EVR) which provides triggers to calibrator and ADCs
- VME computer can process data from 10-20 attached PADs
- Dedicated ethernet switch; 100Mb/FD to multiple PADs, 1Gb uplink to VME IOC

## **Communication and Software Architecture**



- Real-time OS on PADs and VME IOC
- High priority (HP) task on PAD reads FIFO
- HP task runs special IP/UDP stack (independent from regular TCP/IP) on both, PAD + VME using dedicated networking hardware
   deterministic data streaming
- Data rate not very high but response time <1ms required</li>
- PAD does no pre-processing (CPU too slow; waveforms are a nice diagnostic)
- Throughput: ~1kB@360Hz / PAD
- Response: IOC provides x/y readings t EPICS in < 1ms</li>
- Data are tagged with pulse-ID & timestamps